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Spin-Dynamical Theory of the Wave-Corpuscular 
Duality 
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The assumption that translations of  the electron are accompanied by spin 
precession enables a deterministic description of electron diffraction and quantiz- 
ation of atomic systems. It is shown that the electromagnetic field of  the precessing 
electron is responsible for modulation of  the beam intensity of  an electron 
scattered from a system of charges and for mechanical stability of  the orbital 
motion of electrons in bound states. 

1. INTRODUCTION 

Since the Uhlenbeck-Goudsmit discovery of spin in 1925, it has been 
assumed, following a rough macroscopic analogy, that for free translations 
of the electron its spin axis remains firmly oriented in space. A direct 
consequence of this was the conclusion that gyromagnetic properties of the 
electron play a negligible role in shaping electron orbits in atomic systems 
(Sommerfeld, 1951). Although such a conclusion was methodologically 
inconsistent (it contradicts the well-known fact that atomic energy levels 
and electron diffraction phenomena depend explicitly upon the Planck 
constant h and, therefore, may be directly related with spin properties of 
the electron), this point of view was commonly accepted. As a result, the 
development of a deterministic theory of the atom was almost completely 
stopped. 

Positive results during the last two decades in the application of classical 
physics to the description of atomic collision problems (Gryzifiski 1965, 
1975; Burges and Percival, 1968; Vriens, 1970; Bates, 1978; Gruji6 et  al., 
1983, Gryzifiski and Kunc, 1986) have shown that the concept of a localized 
electron moving along a well-specified orbit should be considered as a 
physical reality. 
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This reality had, however, two great enigmas: quantization of atomic 
orbits and electron diffraction. Much work has been done on these puzzles 
(e.g., Bohm, 1952; de Broglie, 1953; Bunge, 1967; Janossy, 1952; Lande, 
1960). Not long ago, it was shown that the Kepler problem in the presence 
of velocity-dependent periodic perturbations has a discrete spectrum of 
stable orbits (Gryzifiski, 1980). This spectrum was found to be identical 
with the spectrum of atomic energy levels providing the frequency of 
periodic perturbations is proportional to the kinetic energy of the electron 
and one-half the Planck constant is the coefficient of proportionality. From 
this fact the hypothesis was developed that translations of the electron are 
accompanied by precession of the spin axis. 

2. TRANSLATIONAL PRECESSION OF THE SPIN 

Ascribing gyromagnetic properties to the electron brings the need of 
formulating the laws of motion for spin coordinates, that is, for the two 
angles defining the orientation of the electron spin axis in space. The classical 
theory of fields predicts the existence of electron spin axis precession in 
the presence of electromagnetic fields (e.g., Barut, 1964), but it leaves 
completely open the question of transient effects in the behavior of spin, 
the theory of which should be formulated in second time derivatives of spin 
coordinates, and says nothing about the behavior of spin in free translations 
of the electron. In view of the above and given various paradoxes in the 
behavior of the electron, such as the Aharanov-Bohm (Aharanov and Bohm, 
1959), the problem seems to be open for discussion. 

Let us assume, therefore, having in view, for instance, some hydro- 
dynamic analogy, and in accordance with the conclusion of Gryzifiski 
(1980), that translations of the electron are accompanied by precession of 
the spin axis around the velocity vector v and that the angular velocity of 
the precession is equal to the kinetic energy of the electron divided by its 
intrinsic angular momentum. Thus, the postulated law of motion for the 
spin of the free electron is 

dt = [sxv] (P.1) 

where s is the unit vector directed along the electron spin axis. If one denotes 
the angle defining the orientation of the spin axis in the plane perpendicular 
to the velocity vector v by ~Os, then on the grounds of (P.1) one has 

d~ s m~2 
at = ~ (2) 
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or alternatively 

d~s ml) 
= - -  ( 3 )  

dl h 

where dI is the element of  the electron path. 
Let us denote now by A the distance in which the cyclic coordinate ~bs 

changes the value by 2~. Then the orientation of the spin axis after traversing 
the distance A is the same as at the beginning of the path. Let us integrate 
equation (3) along this path. As a result, we obtain 

ff~d#J,=(~)ffvdl (4 i  

If  the electron moves with a constant velocity, the spin wavelength 
equation (4) assumes the form of the famous de Broglie wave postulate: 

h 
A = - -  (de Broglie postulate) (5) 

m y  

This result shows the equivalence of the postulate (P.1) and the de 
Broglie postulate. However, now the wavelength has a well-specified mean- 
ing: it is the distance traveled by the electron during one revolution of the 
spin axis. Moreover, now the "wave" relation, when formulated in the 
differential form, opens new possibilities. In view of the experimental fact 
that the electron has magnetic moment ~, 

h 
~t = e - -  s ( 6 )  

m s  

which produces the field 

~• 
H = V  xA~ where A~ = r3 (7) 

the postulate (P.1) has a great significance for the whole dynamics of the 
moving electron. 

Now the dipole magnetic field of the moving electron is a periodically 
varying function of time, and, as follows from the basic relation of the 
Maxwell theory 

1 6 H  
V x E - (8) 

c 6t 

the moving electron has a periodic varying spin component of the electric 
field: 

E~pia 1 F ~ x r l  
= L - - ? - J  (9) 
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The field of the moving electron in the presence of spin translational 
precession is therefore 

Eq,~= ?+ [(sx~) • , (10) 

Hs = - eAc[V • (s x r/r3)] (11) 

where Ac is the electron Compton wavelength, and s(t), given by equation 
(P.1), is a periodic function of time. For a free electron s(t) can be written 
in the following way: 

s(t) = (s.'~)~+ [(s X ~) X~] exp(iwst) (12) 

which clearly shows the periodic character of the spin field. 
In view of the above it is reasonable to expect, during the motion of 

an electron in a system of periodically situated charges or current elements, 
various resonances introducing periodic modulations in the intensity of 
scattered electrons characteristic for diffraction and interference. 

3. DIFFRACTIONAL SCATrERING 

To explain the essence of the electron diffraction (interference) 
phenomena, let us consider scattering of a single fast electron on identically 
charged collinear lines (see Fig. 1). Under the assumption that the potential 
produced by the scattering system is appreciably smaller than the potential 
accelerating the electrons, the problem can be effectively solved on the basis 
of the co-called small-angle approximation, which is a satisfactorily precise 
method of analysis for most electron diffraction experiments. In the approxi- 
mation considered the scattering angle is given by 

1 r+~^ 
tan O~-mvoj_o  ~ k.F(x=const, y=const, z=vot) dt (13) 

^ 

where k is the unit vector perpendicular to the initial velocity of the electron 
and F is the interaction force of the electron with the scattering system. If 
the scattering system is formed by a set of collinear charged lines parallel 
to the x axis and crossing the yz plane at points yi, zi and carrying per unit 
of length the charge (qt)i, then 

F=~i (qt)~ f ~Eq,~(x; y~, zi) (14) 

Denoting the distance between the moving electron and the ith charged 
line by Pi, 

o ,  ~ = ( y ,  - y o ) 2 +  (z, - zo )  2 ( 1 5 )  
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~ q % ~ A P ~ = I  APmQx d d sln (n+�89 

Fig. 1. Whether or not fast electrons are scattered by the two charged centers depends upon 
the electron spin wavelength and the "effective" distance between centers, which, for electrons 
moving along a line inclined to the dipole axis at an angle 0, is equal to d sin 0. This fact 
forms the essence of a large number of diffraction phenomena. 

and taking into account equation (10), we find 

(q')~2I ^ ~o) x~i]]  

Therefore, 

(16) 

2   q ir+ l[AA ( 0)]2AA AA]} tan "0 = - m v ~  e - -  P i"  k y  - �9 d - ~  Pi c ( p i ' k z ) ( S - k y )  dz (17)  

According to equation (12), the projection of the spin vector w on the 
direction ky in the approximation considered is given by 

A / "  

s ' k y  : s O COS(Z/A q- @o) (18)  
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Performing an integration over z, we finally obtain 

tanO=-mvgeY.(qt), sgn(y,-yo)-~,c) s, sin +Oo (19) 

Now, the intensity of electrons scattered at the angle O can be quite 
easily calculated�9 Using the 8-function formalism we have 

I(O, Oo):I+~I(yo)a[O-O(Yo, O ~ 1 7 6  (20) 

where O(yo, ~0o) represents the solution of equation (19) and l(yo) is the 
intensity of the incident beam. Since the effective intensity is the average 
of scattering events with various values of the phase angle ~0o, we have 

I(O)= 1 f0 ''~ 2~-~ I ( O, qJo) dqJo (21) 

To carry out the calculations to completion one must specify precisely 
the scattering system�9 Prior to the analysis of the particular case, however, 
it is worth noting that in the linear scattering theory with some symmetry 
in the distribution of the charge in the scattering system the Coulomb 
interaction terms cancel each other and the scattering is entirely determined 
by the spin field�9 In particular, as follows from equation (19), the Coulomb 
term vanishes if the total charge situated to the left of the coordinate Y0 
and the total charge situated to the right of the coordinates Yo are equal (in 
particular both may be zero)�9 

Let us assume now that the scattering system is formed by two identi- 
cally charged lines separated by a distance d and the incident beam is 
inclined to the normal of the plane containing the lines by the angle 0; then 

d id 
y~=(-1) i cos0, z i=(-1)  ~sin0, i=1 ,2  (22) 

and the scattering formula assumes the form 

tan 0 = - ~ - ~ c 2 } S ,  e -(d cos sin Oo ch 

�9 [d sin O\ 
+ s m ~ )  cos q~o s h ( ~ )  ] (23) 

Introducing the above into equation (20), one can calculate the intensity 
of the scattered beam. Assuming that the intensity of the incident beam is 
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uni fo rm across the beam,  we have 

= - -  ~[ tan O - t a n  Oo(cos D sin #/o ch s c 
x(a-) ( g A )  2~  . - < .  ~o~ o)/. 

+s in  D cos 4:o sh ~:)] d#:o d~: 

where 

and 

�9 [ eq,~ Oe-(acoso)/,~ tan Oo=  k;V)'y 

(24) 

(25) 

(dsin0) (  s,n0) 
= - -~ cc if  sin -* 1 (30) I (0=0)  t a n o o K  sin h 3, 

The structural  pa rame te r  d/A is therefore  the factor  that  determines  the 
t ransmiss ion of  the system. Electrons can pass through the system un- 
scat tered if 

sin 0, = nA/d (31) 

It fol lows f rom the above  that  electrons penetra t ing a system of  periodi-  
cally si tuated charges can p ropaga te  freely (not being scattered) in the 
directions de te rmined  by equat ion  (31). The directions of  electron p ropaga -  
t ion cor respond  to individual  spots on the diffraction picture p roduced  by 
electrons penetra t ing the crystals. 

and 

d sin 0 
D = - -  (26) 

A 

Performing an integrat ion over  ~o, we obtain  

2 ~+(a oos ol/a ds c 
I(0) = ( Ioa)  - -  ] (27) 

~r 0-(a cos o)/A ~/[(ch 2 ~ : - s in  2 D)  tan 2 O 0 - t a n  2 0]  1/2 

With the assumpt ion  d (cos  0 ) / h  >> 1, the integrat ion can be effectively 
carried out; the result is 

,(o)=( ,oa ]K([sin2D+(tanO]2]' =) 
\ t a n  a o /  \ \ t a n  Oo/ J (28) 

where K is the comple te  integral of  the first kind. 
It fol lows f rom the above  that  the width and intensity of  the scattering 

line are respect ively given by 

d s i n 0  ( d s i n 0  ) 
-> 0 if cos -+ 1 (29) tan Gnu• = tan Oo cos A A 
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In the case of electrons moving through a slit or through a system of 
slits (as in the case of  Young type experiments) the situation is almost 
identical. To realize this one must take into account that the distribution 
of the charge in a conducting plane with a slit is highly peaked at the edges 
of  the slit. According to the classical theory of the field this distribution is 
given by 

o'~x/[x2-(d/2)2] u2 if x>d/2  (32) 

where d is the width of the slit and x is the distance to the center of  the 
slit. Since o--->oo at x-->d/2, therefore the field in the slit may in first 
approximation be identified with the field of  two charged lines placed at 
the edges of  the slit and the whole scattering problem may be reduced to 
the case discussed above. 

In view of relation (29) and (30), it is evident that the shadow of a slit 
illuminated with electrons emitted from a point source is not uniform, since 

it[un 
of '~1" 

;reen 

Fig. 2. The diffraction of electrons. Depending upon the value of the angle 0, electrons are 
scattered or not. As a result, illumination of the screen becomes modulated. 
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at angles 0, given by equation (31) electrons proceed without deviation, 
and at angles 0,>=1/2 given by 

A 
sin 0n+i/2 = (n +�89 ~ (33) 

transmission of the electrons as a result of scattering is strongly lowered. 
As a result a diffraction picture as shown in Fig. 2 is formed. 

The diffraction of electrons at the edge of an object has the same origin; 
however, in the case of a nonconducting object, one must keep in view the 
fact that matter consists of positively and negatively charged particles and 
that the charge neutrality locally (i.e., at the boundary of the objects) is not 
preserved. 

4. DYNAMICS OF QUANTIZATION 

In quantum wave mechanics the quantized states are determined by 
sets of rules (the Schr6dinger equation may be considered as a rule formu- 
lated in differential form) and the dynamics of transitions between the 
quantized states is not considered at all. 

In our case, identification of the "wave" field of the electron forms the 
ground for the development of a dynamical theory of quantization with a 
precise description of the transition process between quantized states. Here 
we present the general aspects of the problem. 

Formally the problem we have to solve first is the problem of the 
mechanical stability of electron motion in the presence of an electromagnetic 
spin field. 

In atomic systems the electromagnetic spin field is in general smaller 
than the Coulomb field by (Z c c)2 Nevertheless, it cannot be neglected, 
since in bound states these small periodic perturbations, after a long enough 
time, through accumulations of small amounts of energy and momentum, 
may change appreciably the parameters of the orbit. 

The stability of mechanical systems in the presence of perturbations is 
one of the most important problems of classical mechanics. It was shown 
some time ago that for some class of perturbations the mechanical system 
has a discrete spectrum of stable solutions. According to Czetaev (1962), 
for the class of perturbations satisfying the set of equations 

~b = A exp(ikS)  (34) 

Y~Z-s g,J : k e W  (35) 
i , j  

6A 6S 
E g i j - -  - -  = 0 (36) 
ij t3qj 6qi 
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the condition of mechanical stability is given by 

2--8ij aqi giJ  +2k2( -ut=~ (37) 
where U is a potential energy function defining the unperturbed problem, 
W is the perturbation potential, S is the complete integral of the Hamilton- 
Jacobi equation for the unperturbed motion, and qio~ are generalized 
coordinates. It is well known that the differential equation of the form given 
above has stationary solutions for particular values of e only; in another 
word, energy corresponding to the stationary motion is quantized. 

Let us look now at the mechanical stability equations (34)-(37) from 
the point of the view of the translational precession law formulated above. 

For a particle moving in the field, S is given by 

;o S = - s t +  p.d l  (38) 

As follows from equations (2) and (3), S/h represents the phase angle 
describing the difference in azimuthal orientation of the spin vector s with 
respect to the velocity vector v in the case of the particle moving with a 
constant velocity (constant energy): 

1 
~o = h e t  (39) 

and in the case of a particle moving in the field U(r) 

= p .  ( 4 0 )  

Therefore, 

and 

k = 1/h (41) 

0 - e x p  i(Os - 0 ~ (42) 

At) +(2m/ h2)(e-  U)=0 (43) 

It follows from the above that the Schr/Sdinger equation is identical 
with the classical mechanical stability equation determining the stability of 
the electron orbit in the presence of spin perturbations, where the function 

represents the translational precession of electron spin (real and imaginary 
parts of ~0 represent projections of the spin vector on the two perpendicular 
axes of the fixed system of coordinates). 

If the electron moves in the field of the nucleus, then 

U = -Ze2/r, (44) 
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and the values of e at which the electron motion is stable are the same as 
given by Bohr's quantum postulate: 

e = - 2 ~ m Z Z e 4 / n 2 h  2 (45) 

If the perturbation force is known, one can derive the spectrum of 
stable electron orbits explicitly by direct solution of the perturbed Kepler 
problem. According to the general method of perturbation calculus, the 
Kepler orbit may be stable if 

6e = (Fp. v) dt  = 0 (46) 

where Fp is the perturbation force and v is the orbital velocity, and the 
integeral is taken along the unperturbed ellipse. Taking into account 
equation (9), which defines the perturbation force Fp, one can show, per- 
forming partial integration, that 

Z e  
8e  = - - -  (A .v)[~ (47) 

C 

In the presence of translational precession & is zero if the spin axis 
performs a complete number of revolutions along the whole orbit. This 
requirement, according to equation (2), is satisfied if 

r d~s = d t  (48) 
dO 

The above relation, which is in fact identical with Bobr's postulate of 
quantization, determines the spectrum of stable Kepler orbits. The spectrum 
is of course the same as given by equation (45). 

The above analysis shows that the postulate (P.1) is the equivalent not 
only of the de Broglie postulate, but of the Schr6dinger postulate as well. 
As in the case of the de Broglie wave postulate, the translational precession 
postulate (P.1) discloses the physical essence of the equation postulated by 
Schr6dinger, and by identification of the forces responsible for quantization 
opens the way to a formulation of the deterministic theory of the atom and 
a dynamical theory of atomic transitions. 

It is worth noting that the dynamical approach to the quantization of 
electron orbits in the Coulomb field of the nucleus allows one to draw some 
important conclusions. 

The direct way of solving the perturbation Kepler problem shows the 
peculiar role of the electron orbit with angular momentum equal to zero. 
In this case, as follows from equation (t2), the perturbation force is zero 
and the motion is particularly stable (the absolute stability is determined 
by higher order perturbation terms). This is consistent with the conclusion 
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derived from atomic collision experiments, which led some time ago to the 
concept of the free-fall atomic model, according to which the ground-state 
electron orbit is the zero angular momentum orbit (Gryzifiski 1972, 1973). 

Another conclusion that can be drawn on the grounds of postulate 
(P.1) concerns the dynamics of the transitions of the electron between 
"quantized" states. 

If the binding energy of the electron is different from that given by 
equation (45), that is, when the condition of periodicity for the spin coordin- 
ate is not satisfied, then the electron is accelerated by the rotary electric 
field. The change of energy at each trip of the electron around the nucleus 
follows from equation (47) roughly as 

[fie 1-~ Ze2;(2c(L/h)(1/r 3) (49) 

where L is the angular momentum of the electron in orbital motion. Taking 
into account that 

o3( ) 3 
one can estimate the evolution time of the orbit. The time necessary for the 
transition of an electron from an orbit of energy E.-~I to an orbit of energy 
E. is roughly 

At(n+l)~n~(zcx~) 2 (51) 

where To is the period of motion on the Bohr orbit. 
This estimation, which is in rough agreement with measurements, shows 

that translational precession muct be taken into account if one is to formulate 
a dynamical theory of atomic transitions. 

Investigating the stability of the Kepler orbit in the presence of perturba- 
tions, one must keep in view that not only energy, but angular momentum 
as well must remain constant in time. This means that the following require- 
ment must be satisfied: 

i lL= (Fp x r ) .  L at =0  (52) 

The above requirement imposes additional restrictions on the orbital motion 
of the electrons, which result in "quantization" of the angular momentum. 

Inspecting equation (10), (46), and (52), one finds that during the 
evolution of the electron orbit the changes of energy are always accompanied 
by changes of the angular momentum (6L is different from zero if only 6s 
is different from zero). This result explains the well-known spectroscopic 
fact that Al in radiative transitions cannot be equal to zero. 
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In view of all the above, we arrive at the conclusion that radiative 
transitions in atomic systems are directly connected with the electron spin 
axis precession, and acceleration is to be regarded as a necessary but not 
sufficient condition for the existence of radiation. 

5. FINAL REMARKS AND C O N C L U S I O N S  

In conclusion, we can state that the wave-corpuscular  enigma is the 
result of  an incorrectly formulated law of motion for the electron spin 
coordinates (for free motion of the electron its spin axis was assumed to 
be firmly oriented in space). The postulated translational precession law 
discloses the nature of  the wave-corpuscular  duality and forms the basis 
for a causal deterministic description of atomic processes. 

The discovered translational precession law specifies the force respon- 
sible for the formation of stable orbits and for diffraction phenomena.  It 
allows one to describe the dynamics of  transitions between stable orb i t s - -  
between different "quantized" s ta tes- -and to formulate the dynamical 
theory of diffraction. 

Against the common conviction that only wave objects can generate a 
periodically modulated intensity, it was proved that a periodically modu- 
lated intensity of  scattered electrons can be derived from deterministic laws 
of motion for the spinning particle, and that the diffraction theory can be 
formulated in a causal way. The geometrical relations that form the essence 
of the existing wave theories have a well-specified origin in the interaction 
of scattered particle with the inhomogeneous distribution of the charged 
components  of  the matter (electrons and nuclei) at the boundaries of 
material bodies. 

The fact that quantization appears as a result of perturbations in the 
Kepler motion explains the success of  classical atomic collision theories, 
which were developed from the assumption that the atom is a well-specified 
mechanical system with precisely determined electron trajectories. 

There are reasons to think that a similar situation exists in the case of  
nuclear matter, and that the formation of stable configurations is determined 
by translational precession of nucleons. However, now magnetic spin inter- 
actions seem to play the decisive role. 
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